If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-20y^2+56y+306=0
a = -20; b = 56; c = +306;
Δ = b2-4ac
Δ = 562-4·(-20)·306
Δ = 27616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27616}=\sqrt{16*1726}=\sqrt{16}*\sqrt{1726}=4\sqrt{1726}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-4\sqrt{1726}}{2*-20}=\frac{-56-4\sqrt{1726}}{-40} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+4\sqrt{1726}}{2*-20}=\frac{-56+4\sqrt{1726}}{-40} $
| Y=3/8x0 | | 2x+2=1x+18 | | y=13-2(-3) | | 10x+17-(x-9)=6x+2 | | 2(g-4)=12 | | 4x*4-6x*3-2x*2+4x+42/2x+3=0 | | 8x-41=3x+35 | | 3v-2=2+v/4 | | k-1-4(2k-9)=0 | | x+3+4x-6=0 | | 21=-y/4 | | v+9/3=8+2v | | x+9=1x | | 6-5x=3x+12 | | 6/7=4x | | -12=-x/3 | | -16=-15/16(4/5q+32/3 | | 3^{4x-1}=27^{x+2} | | 1=0.3x−0.6x−5 | | 2^t=23.4 | | 11-2(8+3p)=7p | | (5x+2)+(25x-8)=0 | | 7(x-2)/(x-3)+(13/×)=-13/×(×-3) | | 258=203-u | | 5p-14=8p+4. | | 3x+26=5(x+8) | | (x-3)^2/2-x+x^2=x-(x-2) | | 6x-3x+26=5(x+8 | | (x-3)^2/2-x+^2=x-(x-2) | | 180=7x+6x+4x | | 5z+z+3=z+3+1 | | 3t=t+50 |